Microsphere a drug delivery system – a review

Meghna KS, M.Krishna Pillai, Sreedevi Giridas, Sreelakshmi C, B. Vijayakumar

Grace College of Pharmacy, Kodunthirapully, Palakkad-678004, Kerela, India.

Abstract
Oral modified-release multiple-unit dosage forms have always been more effective therapeutic alternative to conventional or immediate release single-unit dosage forms. With regards to the final dosage form, the multiparticulates are usually formulated into microspheres and filling them into hard gelatin capsules. Microspheres received much attention not only for prolonged release, but also for targeting of drugs. In future microspheres will find the central place in novel drug delivery, particularly in diseased cell sorting, diagnostics, genetic materials, targeted and effective drug delivery. Microspheres are characteristically free flowing powders consisting of proteins or synthetic polymers having a particle size ranging from 1-1000 μm. The range of Techniques for the preparation of microspheres offers a Variety of opportunities to control aspects of drug administration and enhance the therapeutic efficacy of a given drug. There are various approaches in delivering a therapeutic substance to the target site in a sustained controlled release fashion. One such approach is using microspheres as carriers for drugs also known as microparticles. It is the reliable means to deliver the drug to the target site with specificity, if modified, and to maintain the desired concentration at the site of interest. Microspheres received much attention not only for prolonged release, but also for targeting of anticancer drugs. In future by combining various other strategies, microspheres will find the central place in novel drug delivery, particularly in diseased cell sorting, diagnostics, gene & genetic materials, safe, targeted and effective in vivo delivery and supplements as miniature versions of diseased organ and tissues in the body.

Keywords: Microspheres, Controlled Release, Therapeutic Efficacy, Novel Drug Delivery

INTRODUCTION
Oral route drug administration is by far the most preferable route for taking medications. However, their short circulating half life and restricted absorption via a defined segment of intestine limits the therapeutic potential of many drugs. Such a pharmacokinetic limitation leads in many cases to frequent dosing of medication to achieve therapeutic effect. Rational approach to enhance bioavailability and improve pharmacokinetic and pharmacodynamics profile is to release the drug in a controlled manner and site specific manner. Some of the problems of overcome by producing control drug delivery system which enhance the therapeutic efficacy of a given drug [1]. For obtain maximum therapeutic efficacy and minimum side effects it necessary to deliver the agent to the target tissue in the optimal amount. In a sustained controlled release fashion, there are various approaches in delivering a therapeutic substance to the target site. Microsphere, as carrier for drug is one such approach which can be used in a sustained controlled release fashion. The range of techniques for the preparation of microspheres offers a variety of opportunities to control drug administration issue. This approach allows the accurate delivery of small quantity of the potent drugs, reduced drug concentration at the site other than the target site and the protection of the labile compound before and after the administration and prior to the site of action [2]. Microspheres are small spherical particles, with diameters 1 μm to 1000 μm. They are spherical free flowing particles consisting of proteins or synthetic polymers which are biodegradable in nature. There are two types of microspheres; microcapsules and micromatrices, which are described as, Microcapsules are those in which entrapped substance is distinctly surrounded by distinct capsule wall and micromatrices in which entrapped substance is dispersed throughout the matrix. Microspheres are sometimes referred to as

To whom correspondence should be addressed:
Meghna KS
Email: meghna.k.suresh@gmail.com
microparticles [3]. Microspheres can be manufactured from various natural and synthetic materials. The behaviour of the drugs in vivo can be manipulated by combining the drug to a carrier particle. The clearance kinetics, tissue distribution, metabolism i.e. kinetics and cellular interaction of the drug are strongly influenced by the behaviour of the carrier [4]. The exploitation of these changes in pharmacodynamics behaviour may lead to enhanced therapeutic efficiency. However, an intelligent approach to therapeutics employing drug carriers phenomenon requires a detailed understanding of the carrier interaction with cellular and organ systems and of the limitations of the systems with respect to the formulation procedures and stability issues [5]. A variety of substances have been used as drug carrier, including immunoglobulins serum proteins, liposomes, microspheres, microcapsules, nanoparticles and even cells such as erythrocytes.

TYPES OF MICROSPHERE

Bioadhesive Microspheres

Adhesion can be defined as sticking of drug to the membrane by using the sticking property of the water soluble polymers. Adhesion of drug delivery device to the mucosal membrane such as buccal, ocular, rectal, nasal etc can be termed as bioadhesion. These kinds of microspheres exhibit a prolonged residence time at the site of application and causes intimate contact with the absorption site and produces better therapeutic action [6-13].

Magnetic Microspheres

This kind of delivery system is very much important which localizes the drug to the disease site. In this kind, a larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. The different types are therapeutic magnetic microspheres and diagnostic microspheres.

i. Therapeutic Magnetic Microspheres

It is used to deliver chemotherapeutic agent to liver tumor. Drugs like proteins and peptides can also be targeted through this system.

ii. Diagnostic Microspheres

It can be used for imaging liver metastases and also can be used to distinguish bowel loops from other abdominal structures by forming nano size particles supramagnetic iron oxides.

Floating microspheres

In floating types the bulk density is less than the gastric fluid and so remains buoyant in stomach without affecting gastric emptying rate. The drug is released slowly at the desired rate, if the system is floating on gastric content and increases gastric residence and increases fluctuation in plasma concentration. Moreover it also reduces chances of striking and dose dumping. One another way it produces prolonged therapeutic effect and therefore reduces dosing frequencies.

Polymeric Microspheres

The different types of polymeric microspheres can be classified as follows and they are biodegradable polymeric microspheres and synthetic polymeric microspheres.

i. Biodegradable Polymeric Microspheres

Natural polymers such as starch are used with the concept that they are biodegradable, biocompatible, and also bioadhesive in nature. Biodegradable polymers prolongs the residence time when contact with mucous membrane due to its high degree of swelling property with aqueous medium, results gel formation. The rate and extent of drug release is controlled by concentration of polymer and the release pattern in a sustained manner. The main drawback is in clinical use drug loading efficiency of biodegradable microspheres is complex and is difficult to control the drug release.

ii. Synthetic Polymeric Microspheres

The interest of synthetic polymeric microspheres are widely used in clinical application, moreover that also used as bulking agent, fillers, embolic particles drug delivery vehicles etc and proved to be safe and biocompatible. But the main disadvantage of these kinds of microspheres, are tend to migrate away from injection site and lead to potential risk, embolism and further organ damage.

Advantages

- Microspheres provide constant prolonged therapeutic effect.
- Reduces the dosing frequency and therefore improves the patient compliance.
- They could be injected into the body due to
the spherical shape and smaller size.
- Better drug utilization will improve the bioavailability and reduce the incidence or intensity of adverse effects.
- Microsphere morphology allows a controllable variability in degradation and drug release [14].

Limitations
- The release rate of the controlled release dosage form may vary from a variety of factors like food and the rate of transit through gut.
- Differences in the release rate from one dose to another.
- Controlled release formulations generally contain a higher drug load and thus any loss of integrity of the release characteristics of the dosage form may lead to potential toxicity.
- Dosage forms of this kind should not be crushed or chewed.

METHODS OF PREPARATION
Preparation of microspheres should satisfy certain criteria:
1. The ability to incorporate reasonably high concentrations of the drug.
2. Stability of the preparation after synthesis with a clinically acceptable shelf life.
3. Controlled particle size and dispersability in aqueous vehicles for injection.
4. Release of active reagent with a good control over a wide time scale.
5. Biocompatibility with a controllable biodegradability.
6. Susceptibility to chemical modification [9, 11, 15-19]

Single emulsion technique
The micro particulate carriers of natural polymers of natural polymers i.e. those of proteins and carbohydrates are prepared by single emulsion technique. The natural polymers are dissolved or dispersed in aqueous medium followed by dispersion in non-aqueous medium like oil. Next cross linking of the dispersed globule is carried out. The cross linking can be achieved either by means of heat or by using the chemical cross linkers. The chemical cross linking agents used are glutaraldehyde, formaldehyde, di acid chloride etc. Heat denaturation is not suitable for thermolabile substances. Chemical cross linking suffers the disadvantage of excessive exposure of active ingredient to chemicals if added at the time of preparation and then subjected to centrifugation, washing, separation.

Fig 1. Single emulsion technique
Double emulsion technique
Double emulsion method of microspheres preparation involves the formation of the multiple emulsions or the double emulsion of type w/o/w and is best suited to water soluble drugs, peptides, proteins and the vaccines. This method can be used with both the natural as well as synthetic polymers. The aqueous protein solution is dispersed in a lipophilic organic continuous phase. This protein solution may contain the active constituents. The continuous phase is generally consisted of the polymer solution that eventually encapsulates of the protein contained in dispersed aqueous phase. The primary emulsion is subjected then to the homogenization or the sonication before addition to the aqueous solution of the poly vinyl alcohol (PVA). This results in the formation of a double emulsion. The emulsion is then subjected to solvent removal either by solvent evaporation or by solvent extraction. a number of hydrophilic drugs like leutinizing hormone releasing hormone (LH-RH) agonist, vaccines, proteins/peptides and conventional molecules are successfully incorporated into the microspheres using the method of double emulsion solvent evaporation/ extraction (Fig 2).

Fig 2. Double emulsion technique

Polymerization techniques
The polymerization techniques conventionally used for the preparation of the microspheres are mainly classified as:
I. Normal polymerization
II. Interfacial polymerization. Both are carried out in liquid phase.

Normal polymerization
It is carried out using different techniques as bulk, suspension, precipitation, emulsion and micellar polymerization processes. In bulk, a monomer or a mixture of monomers along with the initiator or catalyst is usually heated to initiate polymerization. Polymer so obtained may be moulded as microspheres. Drug loading may be done during the process of polymerization. Suspension polymerization also referred as bead or pearl polymerization. Here it is carried out by heating the monomer or mixture of monomers as droplets dispersion in a continuous aqueous phase. The droplets may also contain an initiator and other additives. Emulsion polymerization differs from suspension polymerization as due to the presence initiator in the aqueous phase, which later on diffuses to the surface of micelles. Bulk polymerization has an advantage of formation of pure polymers.

Interfacial polymerization
It involves the reaction of various monomers at the interface between the two immiscible liquid phases to form a film of polymer that essentially envelops the dispersed phase.
Phase separation coacervation technique
This process is based on the principle of decreasing the solubility of the polymer in organic phase to affect the formation of polymer rich phase called the coacervates. In this method, the drug particles are dispersed in a solution of the polymer and an incompatible polymer is added to the system which makes first polymer to phase separate and engulf the drug particles. Addition of non-solvent results in the solidification of polymer. Poly lactic acid (PLA) microspheres have been prepared by this method by using butadiene as incompatible polymer. The process variables are very important since the rate of achieving the coacervates determines the distribution of the polymer film, the particle size and agglomeration of the formed particles. The agglomeration must be avoided by stirring the suspension using a suitable speed stirrer since as the process of microspheres formation begins the formed polymerize globules start to stick and form the agglomerates. Therefore the process variables are critical as they control the kinetic of the formed particles since there is no defined state of equilibrium attainment.

Spray drying and spray congealing

These methods are based on the drying of the mist of the polymer and drug in the air. Depending upon the removal of the solvent or cooling of the solution, the two processes are named spray drying and spray congealing respectively. The polymer is first dissolved in a suitable volatile organic solvent such as dichloromethane, acetone, etc. The drug in the solid form is then dispersed in the polymer solution under high speed homogenization. This dispersion is then atomized in a stream of hot air. The atomization leads to the formation of the small droplets or the fine mist from which the solvent evaporates instantaneously leading the formation of the microspheres in a size range 1-100 μm. Microparticles are separated from the hot air by means of the cyclone separator while the traces of solvent are removed by vacuum drying. One of the major advantages of the process is feasibility of operation under aseptic conditions. The spray drying process is used to encapsulate various penicillins. Thiamine mononitrate14 and sulpha ethylthiadizole15 are encapsulated in a mixture of mono- and diglycerides of stearic acid and palmitic acid using spray congealing. Very rapid solvent evaporation, however leads to the formation of porous microparticles (Fig 3).

Fig 3. Spray drying

Solvent extraction
Solvent evaporation method is used for the preparation of microparticles, involves removal of the organic phase by extraction of the organic solvent. The method involves water miscible organic solvents such as isopropanol. Organic phase is removed by extraction with water. This process decreases the hardening time for the microspheres. One variation of the process involves direct addition of the drug or protein to polymer organic solution.
The rate of solvent removal by extraction method depends on the temperature of water, ratio of emulsion volume to the water and the solubility profile of the polymer.

PHYSICOCHEMICAL EVALUATION

Characterization
The characterization of the microparticulate carrier is an important phenomenon, which helps to design a suitable carrier for the proteins, drug or antigen delivery. These microspheres have different microstructures. These microstructures determine the release and the stability of the carrier [10, 16, 20].

Particle Size and Shape
The most widely used procedures to visualize microparticles are conventional light microscopy (LM) and scanning electron microscopy (SEM). Both can be used to determine the shape and outer structure of microparticles. LM provides a control over coating parameters in case of double walled microspheres. The microspheres structures can be visualized before and after coating and the change can be measured microscopically. SEM provides higher resolution in contrast to the LM. SEM allows investigations of the microspheres surfaces and after particles are cross-sectioned, it can also be used for the investigation of double walled systems. Confocal fluorescence microscopy is used for the structure characterization of multiple walled microspheres. Laser light scattering and multi size coulter counter other than instrumental methods, which can be used for the characterization of size, shape and morphology of the microspheres.

Electron Spectroscopy for Chemical Analysis
The surface chemistry of the microspheres can be determined using the electron spectroscopy for chemical analysis (ESCA). ESCA provides a means for the determination of the atomic composition of the surface. The spectra obtained using ESCA can be used to determine the surfacial degradation of the biodegradable microspheres.

Attenuated total reflectance Fourier Transform Infrared Spectroscopy
FT-IR is used to determine the degradation of the polymeric matrix of the carrier system. The surface of the microspheres is investigated measuring alternated total reflectance (ATR). The IR beam passing through the ATR cell reflected many times through the sample to provide IR spectra mainly of surface material. The ATRFTIR provides information about the surface composition of the microspheres depending upon manufacturing procedures and conditions.

Density Determination
The density of the microspheres can be measured by using a multi volume pycnometer. Accurately weighed sample in a cup is placed into the multi volume pycnometer. Helium is introduced at a constant pressure in the chamber and allowed to expand. This expansion results in a decrease in pressure within the chamber. Two consecutive readings of reduction in pressure at different initial pressure are noted. From two pressure readings the volume and hence the density of the microsphere carrier is determined.

Isoelectric Point
The micro electrophoresis is an apparatus used to measure the electrophoretic mobility of microspheres from which the isoelectric point can be determined. The mean velocity at different Ph values ranging from 3-10 is calculated by measuring the time of particle movement over a distance of 1 mm. By using this data the electrical mobility of the particle can be determined. The electrophoretic mobility can be related to surface contained charge, ionisable behaviour or ion absorption nature of the microspheres.

Surface Carboxylic Acid Residue
The surface carboxylic acid residue is measured by using radioactive glycine. The radioactive glycine conjugates is prepared by the reaction of c14-glycine ethyl ester hydro chloride with the microspheres. The glycine residue is linked using the water soluble condensing 1- ethyl-3 (3-dimethyl amino propyl) carbidiimide (EDAC). The radioactivity of the conjugate is then measured using liquid scintillation counter. Thus the carboxylic acid residue can be compared and correlated. The free carboxylic acid residue can be measured for hydrophobic or hydrophilic or any other derivatized type of the microspheres.

Surface Amino Acid Residue
Surface associated amino acid residue is determined by the radioactive c14-acetic acid conjugate. The carboxylic acid residue is measured through the liquid scintillation counter and hence
the amino acid residue can be determined indirectly. EDAC is used to condense the amino group and the c14 –acetic acid carboxylic acid residue. The method used for determining the free amino or the free carboxylic acid residues are based on indirect estimation, by measuring the radioactivity of the c14 having acetic acid or the glycine conjugate. The accuracy of the method however, depends on the time allowed for conjugation of the radioactive moiety and the reactivity of free functional group.

Capture Efficiency
The capture efficiency of the microspheres or the percent entrapment can be determined by allowing washed microspheres to lyse. The lysate is then subjected to the determination of active constituents as per monograph requirement. The percent encapsulation efficiency is calculated using following equation: % Entrapment = Actual content/Theoretical content x 100

Angle of Contact
The angle of contact is measured to determine the wetting property of a micro particulate carrier. It determines the nature of microspheres in terms of hydrophilicity or hydrophobicity. This thermodynamic property is specific to solid and affected by the presence of the adsorbed component. The angle of contact is measured at the solid/air/water interface. The advancing and receding angle of contact are measured by placing a droplet in a circular cell mounted above objective of inverted microscope. Contact angle is measured at 2000C within a minute of deposition of microspheres.

In - Vitro methods
There is a need for experimental methods which allow the release characteristics and permeability of a drug through membrane to be determined. For this purpose, a number of in vitro and in vivo techniques have been reported. in vitro drug release studies have been employed as a quality control procedure in pharmaceutical production, in product development etc. Sensitive and reproducible release data derived from physico-chemically and hydro dynamically defined conditions are necessary. The influence of technologically defined conditions and difficulty in simulating in vivo conditions has led to development of a number of the dosage form in this method is made to adhere at the bottom of the beaker containing the medium and stirred uniformly using over head stirrer. Volume of the medium used in the literature for the studies varies from 50-500 ml and the stirrer speed form 60-300 rpm.

Interface Diffusion System
This method is developed by Dearden & Tomlinson. It consists of four compartments. The compartment A represents the oral cavity, and initially contained an appropriate concentration of drug in a buffer. The compartment B representing the buccal membrane, contained 1-octanol, and compartment C representing body fluids, contained 0.2 M HCl. The compartment D representing protein binding also contained 1-octanol. Before use, the aqueous phase and 1- octanol were saturated with each other. Samples were withdrawn and returned to compartment A with a syringe.

Modified Keshary Chien Cell
A specialized apparatus was designed in the laboratory. It comprised of a Keshary Chien cell containing distilled water (50ml) at 370 C as dissolution medium. TMDDS (Trans Membrane Drug Delivery System) was placed in a glass tube fitted with a 10# sieve at the bottom which reciprocated in the medium at 30strokes per min.

Dissolution Apparatus
Standard USP or BP dissolution apparatus have been used to study in vitro release profiles using both rotating elements, paddle and basket. Dissolution medium used for the study varied from 100- 500 ml and speed of rotation from 50-100 rpm.

In -vivo methods
Methods for studying the permeability of intact mucosa comprise of techniques that exploit the biological response of the organism locally or systemically and those that involve direct local measurement of uptake or accumulation of penetrants at the surface. Some of the earliest and simple studies of mucosal permeability utilized the systemic pharmacological effects produced by drugs after application to the oral mucosa. However the most widely used methods include in vivo studies using animal models, buccal absorption tests, and perfusion chambers for studying drug permeability.
RECENT ADVANCES IN MICROSPHERE
Important utilizations of chitosan polymer

Cholesterol-lowering effects
Chitosan and cellulose were used as examples of fibers with high, intermediate and low bile acid-binding capacities, respectively. The serum cholesterol levels in a control group of mice fed a high fat/high cholesterol diet for 3 weeks increased about 2-fold to 4.3 mM and inclusion of any of these fibers at 7.5% of the diet prevented this increase from occurring. In addition, the amount of cholesterol accumulated in hepatic stores due to the HFHC diet was reduced by treatment with these fibers. The three kinds of fibers showed similar hypocholesterolaemic activity; however, cholesterol depletion of liver tissue was greatest with cholestyramine. The mechanisms underlying the cholesterol lowering effect of cholestyramine were, 1) Decreased cholesterol (food) intake, 2) Decreased cholesterol absorption efficiency, 3) Increased faecal bile acid and cholesterol excretion. The latter effects can be attributed to the high bile acid-binding capacity of cholestyramine. In contrast, incorporation of chitosan or cellulose in the diet reduced cholesterol (food) intake, but did not affect either intestinal cholesterol absorption or faecal sterol output. The present study provides strong evidence that above all satiation and satiety effects underlie the cholesterol lowering [17, 19-20].

Increase stability of drug
Chitosan polymer is used to increase the stability of the drug in which the drug is complexed with chitosan and make slurry and kneading for 45 minutes until dough mass. This dough mass is pass through sieve no.16 and make a granules is completely stable at different condition.

Orthopaedic patients
Chitosan is a biopolymer that exhibits osteo conductive, enhanced wound healing and antimicrobial properties which make it attractive for use as a bioactive coating to improve Osseo integration of orthopedic and craniofacial implant devices. It has been proven to be useful in promoting tissue growth in tissue repair and accelerating wound-healing and bone regeneration.

Cosmetics industry
Cosmetic compositions are disclosed for the treatment of hair or skin, characterized by a content of new quaternary chitosan derivatives of the formula. The chitosan derivatives have a good substantial, particularly to hair keratin, and prove to have hair strengthening and hair conditioning characteristics. e.g.: Hair setting lotion, Oxidation Hair-coloring Composition, Hair toning Composition, Skin Cream, Hair treatment Composition, Gel-form.

Dental Medicine
Chitosan have been recognized to accelerate wound healing to attain an aesthetically valid skin surface, and to prevent excess scar formation. In dental medicine, chitosan is also applied as a dressing for oral mucous wound and a tampon following radical treatment of maxillary sinusitis. Furthermore, it is being investigated as an absorbing membrane for periodontal surgery. Chitosan has a variety of biological activities and advertised as a healthy food that is effective for improvement and/or care of various disorders, arthritis, cancer, diabetes, hepatitis, etc.

Chitosan as Permeation Enhancer
It has been reported that chitosan, due to its cationic nature is capable of opening tight junctions in a cell membrane. This property has led to a number of studies to investigate the use of chitosan as a permeation enhancer for hydrophilic drugs that may otherwise have poor oral bioavailability, such as peptides. Because the absorption enhancement is caused by interactions between the cell membrane and positive charges on the polymer, the phenomenon is pH and concentration dependant. Furthermore increasing the charge density on the polymer would lead to higher permeability.

Chitosan as Mucoadhesive Excipient
Bioadhesivity is often used as an approach to enhance the residence time of a drug in the GI tract, hereby increasing the oral bioavailability. A comparison between chitosan and other commonly used polymeric excipients indicates that the cationic polymer has higher bioadhesivity compared to other natural polymers, such as cellulose, Xantham gum, and starch.

Effect of chitosan: citric acid ratio on drug release
It has been demonstrated that polymer with appropriate viscosity and expanding property can...
be used as osmotic agents for the release of water-insoluble drug. Due to its high molecular weight and a linear unbranched structure, chitosan is completely biodegradable, toxicologically harmless and low cost, and exhibits an excellent gelation characteristic. Hence the potential for chitosan to be used as a polymeric osmotic agent in osmotic pump is obvious. The hydration and gel formation of chitosan are very much dependent on the pH of surroundings. It is insoluble at an alkaline and neutral pH but soluble at acid condition. Upon dissolution, amine groups of the polymer become protonated, forming a resultant viscous and soluble polysaccharide. Inclusion of citric acid as pH-regulating excipient in the developed formulations was expected to decrease the micro environmental pH of the core to a suitable level at which chitosan could form appropriate viscous gelling solution and hence, to enhance the osmotic pressure of core tablets.

Enhanced bone formation by transforming growth factor (TGF-pl)
Chitosan composite microgranules were fabricated as bone substitutes for the purpose of obtaining high bone-forming efficacy. The chitosan microgranules were fabricated by dropping a mixed solution into a NaOH/ethanol solution. TGF-pl was loaded into the chitosan microgranules by soaking the microgranules in a TGF-pl solution.

Direct compressible excipients and as binder
Chitosan has an excellent property as excipients for direct compression of tablets where the additions of 50% chitosan result in rapid disintegration. The degree of deacetylation determine the extent of moisture absorption.Chitosan higher then 5% was superior to corn starch and microcrystalline cellulose as a disintigrant .The efficiency was dependent on chitosan crystalinity, degree of deacetylation, molecular weight and particle size. Chitosan is found to be excellent tablet binder as compared to other excipients with the rank order co-relation for binder efficiency. Hydroxy propyl methyl cellulose > chitosan > Methyl cellulose > Sodium carboxy methylcellulose.

Wound healing properties
Efficacy of chitosan in the promotion of wound healing was first reported in 1978. Chitosan acetate films, which were tough and protective, had the advantage of good oxygen permeability, high water absorptivity and slow enzymatic degradation.

CONCLUSION
Drug absorption in the gastrointestinal tract is a highly variable procedure and prolonging gastric retention of the dosage form extends the time for drug absorption. Hollow microsphere promises to be potential approach for gastric retention. Although there are number of difficulties to be worked out to achieve prolonged gastric retention, a large number of companies are focusing toward commercializing this technique. In future by combining various other strategies, microspheres will find the central place in novel drug delivery, particularly in diseased cell sorting, diagnostics, gene & genetic materials, safe, targeted and effective in vivo delivery and supplements as miniature versions of diseased organ and tissues in the body. The ethyl cellulose microspheres of ibuprofen were successfully prepared by solvent evaporation technique and confirmed that it is a best method for preparing ibuprofen loaded microspheres from its higher percentage yield. The formulation F3 has highest milligram of drug content followed by other formulations. The percentage of encapsulation of three formulations was found to be in the range of 70 to 76.1. Higher percentage of loading was obtained by increasing the amount of ibuprofen with respect to polymer. The particle size of a microsphere was determined by optical microscopy and all the batches of microspheres show uniform size distribution. The average particle size was found to be in the range of 224-361μm. The prepared microspheres had good spherical geometry with smooth as evidenced by the scanning electron microscopy. The invitro dissolution studies showed that ibuprofen microspheres formulation showed better sustained effect (93%) over a period of 8 hours than other Formulations.

ACKNOWLEDGEMENT
None.

CONFLICT OF INTEREST
No Conflict of Interest.

Meghna et al., Microsphere a drug delivery system – a review
REFERENCES